USSR

UDC:533.17+533,73

en gegesen bysken og frigen er kjedig kunde skriven en kommen i berødt i med en en gelen beste i eneret en en En gegesek en begræde der beste kom brite brite bli belle en kommen i berødt en briten bli en bestekke bli briten bli belle bli bestekke bli briten bli bestekke bli briten bli bestekke bli briten bli bestekke bli briten bli b

YURINSKIY, V. T., SHESTACHENKO, I. Ya.

"Graphic Representation of Equation for Conversion of Energy for a Stream of an Ideal Gas"

Tr. Novocherkas. Politekhn. In-ta [Works of Novocherkassk Polytechnical Institute], 1973, 275, pp 14-21 (Translated from Referativnyy Zhurnal Turbostroyeniye, No 11, 1973, Abstract No 1.49.92)

Translation: The concept of the null-vector fields of velocities of forward motion of molecules of gas, angular velocities of rotary motion of molecules and gas elastic state energy is presented. Based on an equation from the kinetic theory of gases, the local enthalpy of a gas is graphically represented in the form of two coplanar components, placed in an orthogonal system of coordinates at an angle of 90° to each other. The graphic image of the energy transformation equation shows clearly that as molecular motion is developed, directed motion is weakened and vice versa. 2 Figures.

1/1

37--

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

USSR

UDC:621.165.76-146.1.001.5

YURINSKIY V. T., Doctor of Technical Sciences, Professor, SHESTACHENKO, I. Ya., Engineer

"Results of Experimental Study of Tangential Forces Acting on Blade of Partial Turbine Stage"

Leningrad, Energomashinostroyeniye No 8, 1970, pp 8-10

Abstract: Experiments were performed to determine the magnitude and nature of changes in the tangential force acting on rotating turbine blades. The purpose of the experiment was to find the distribution of instantaneous pressures at the greatest possible number of points on the surface of the blade, then by approximate integration, to determine the summary tangential force. The most important result of the experiment is the establishment of the nature of loading of a blade as it enters the stream of air leaving a nozzle. As the blade approaches the nozzle, a reverse tangential force acts upon it. The axial clearance is very significant in determining the variable component of the tangential force. The experiments indicate the variable tangential force acting on a turbine blade as a function of axial clearance and thickness of nozzle output edge. The variable force is proportional to the unevenness of the field of velocities of the working fluid beyond the nozzle.

USSR

UDC 591.543.42:591.48.2-18.05:599.323

YURISOVA, M. N., Laboratory of Field and Experimental Ecology, Institute of Physiology, of the Siberian Department, Academy of Sciences USSR, Novosibirsk, and Laboratory of Neuroendocrinology, Institute of Evolutionary Physiology and Biochemistry imeni I. M. Sechenov, Academy of Sciences USSR, Leningrad

"Changes in the Hypothalamus-Hypophysis Neurosecretory System of Susliks (Citellus Erythrogenys During Hibernation)"

Leningrad, Zhurnal Evolyutsionnoy Biokhimii i Fiziologii, Vol 6, No 5, Sep/Oct 70, pp 516-522

Abstract: Maximum deposition of neurosecretions in the neurosecretory cells of the hypothalamus and the rear portion of the pituitary gland in hibernating susliks is observed during December and January. At the end of January, some activation of the hypothalamus-pituitary neurosecretory system is observed; this becomes quite pronounced in March. As the hibernation period progresses, the functional state of the glandular system changes in the direction of gradual activation. Experimental data collected in a study of 20 susliks indicate that the above glandular system exerts a highly significant effect on the hibernation mechanism.

USSR

UDO 621.396.62.028.7:621.391.82

PENIN, N.A., KHAYKIN, N.SH., YURIST BAY

"On The Investigation Of The Noise-Factor Of An Optical Heterodyne Reciver With Impurity Photoresistance"

Radiotekhnike i elektronika, Vol XVII, No 5, May 72, pp 1018-1023

Abstract: An expression is found for the noise factor F of an optical heterodyne receiver with impurity photoresistence and with arbitrary powers of the heterodyne, and for various relations between the resistence of the photosensitive semiconductor crystal and the load. The problem of a choice of the parameters of the impurity photoresistence is considered with the object of decreasing the magnitude of the noise factor F. 3 fig. 7 ref. Received by editors, 12 April 1971.

1/1

USSR

UDC 531.781

YURKAUSKAS, A. I.

"Use of Compensation Method for Measuring Resisting Moments of High-Precision Microminiature Bearings of "C" Class Precision"

Nauchn. tr. vyssh. uchebn. zavedeniy LitSSR. Vibrotekhnika (Scientific Works of Higher Educational Institutions LitBSR. Vibroengineering), 1969, No 3, pp 27-31 (from RZH-Metrologiya i Izmeritel'naya Tekhnika, No 1, Jan 70, Abstract 1.32.328)

Translation: A description of a device for measuring the resisting moments of bearings is presented. The operation of the device is based on measuring the magnitude of torque instability in the internal race of the bearing which appears under the action of friction in application to the external race of constant torque. The instability of torque in the bearing is checked by the change in a current produced by a signal generator whose rotor is coupled with the internal bearing race.

er ilbar ing gifter fall district afternation difference and species PROCESSING DATE--230CT70 UNCLASSIFIED FITLE--EFFECT OF AXIAL SUBSTITUTIONS ON COBALT CARBON AND COBALT NITROGEN

AUTHOR-(05)-ROSHCHUPKINA, O.S., RUDAKOVA, I.P., POSPELOVA, T.A.,

YURKEVICH, A.H., BURODKO, YU.G.

COUNTRY OF INFO--USSR

SOURCE-ZH. OBSHCH. KHIM. 1970, 40(2), 466-70

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--COBALT COMPLEX, OXIME, PYRIDINE, IR SPECTRUM, ELECTRON DONOR, EXCHANGE REACTION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1995/1419

STEP NO--UR/0079/70/040/002/0466/0470

CIRC ACCESSION NO--APOLL6866

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

PROCESSING DATE--230CT70 UNCLASSIFIED 026 2/2 CIRC ACCESSION NO--APOLL6866 ABSTRACT. TREATING CHLOROPYRIDINE (OR ABSTRACT/EXTRACT--(U) GP-0-TRIPHENYLPHOSPHINO) BIS(DIMETHYLGLYOXIME)COBALT SUSPENSION IN AQ. ETOH WITH NABH SUB4 GAVE COBALOXIMES I WITH INDICATED L AND R: C SUB5 H SUB5 N. ME, M. 220DEGREES; C SUB5 H SUB5 N, CD SUB3, D. 210DEGREES; PH SUB3 P. ME. M. 174-6DEGREES; PH SUB3 P. CD SUB3, M. UNSTATED; ME SUB2 S, ME, M. 178DEGREES; H SUB2 O, ME M. 108DEGREES; C SUB5 H SUB5 N, HOCH SUB2 CHCH SUBZ CL, M. 179-80DEGREES. THE IR SPECTRA ARE SHOWN. INCREASED ELECTRON ACCEPTOR NATURE OF SUBSTITUENTS IN I REDUCES THE FREQUENCY OF CO-C AND CO-N BANDS WHILE INCREASED ELECTRON DONOR ABILITY OF AXIAL LIGANDS IN I SHIFTS THE CO-C AND CO-N BANDS TOWARD HIGHER FREQUENCIES. FACILITY: VSES. NAUCH.-ISSLED. VIT. INST., MOSCOW. USSR. UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

1/2 015 UNCLASSIFIED PROCESSING DATE--300CT70
TITLE-HALUGENATION OF A BENZENEBORDNATE OF D-GLUCOSE -U-

AUTHOR-1021-MOGEL, L.G., YURKEVICH, A.M.

CCUNTRY OF INFO-USSR

SOURCE-ZH. OBSHCH. KHIM. 1970, 40(3), 708

DATE PUBLISHED----70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS-BENZENE DERIVATIVE, ORGANOBORDN COMPOUND, GLUCOSE, HALOGENATION, CHEMICAL SYNTHESIS, MOLECULAR STRUCTURE

CENTROL MARKING-NO RESTRICTIONS

OCCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—3001/1985

STEP NO--UR/0079/70/040/003/0708/0708

CIRC ACCESSION NO--APO127380

CIRC ACCESSION ABSTRACT/EXTRAC	CT(U) GP-0-	ABSTRACT. HEATI	NG I IN CCL SU	B4 WITH 2 MOLES
INCAIMENT MI	IH 1.3.PROPAN	MOVAL OF PH SUB3 P REDIOL, GAVE (VIA I	IN TODEDCEME !	TT IV COULLE
OF14 No 100-0	DUCOKEE2. WI	TH 1:1 RATION OF T	HE REACTANTS T	M CURB CHRS AT
TSO_INERKEE?	FAC	WAS FORMED SIPERCILITY: VSES. NAUC	ENI III (X EQU. HISSUED. VIT.	ALS BR], M. AM. INST
MOSCOW, USSR.				2113124
	te [*]			,
	•			•

1/2 010

PROCESSING DATE--300CT70

TITLE-REACTION OF COBALOXIMES HITH URACIL DERIVATIVES -U-AUTHOR-(04)-BRGDULINASHVETS, V.I., RUDAKOVA, 1.P., DYMOVA, S.F.,

COUNTRY OF INFO-USSR

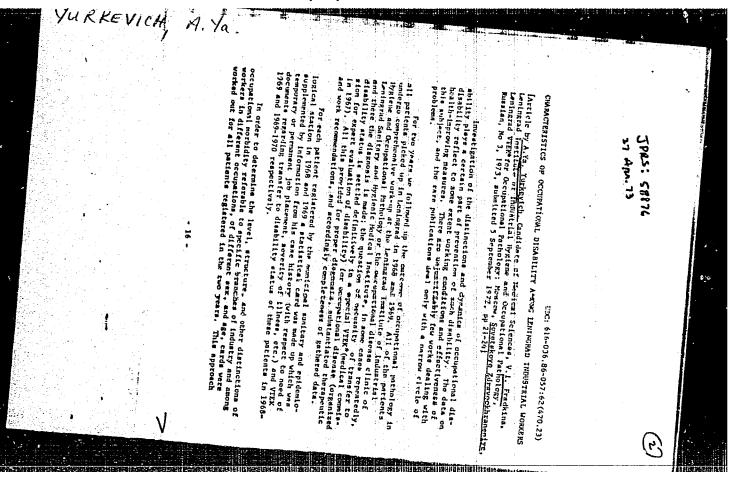
SOURCE-ZH. OBSHCH. KHIM. 1970, 40(3)

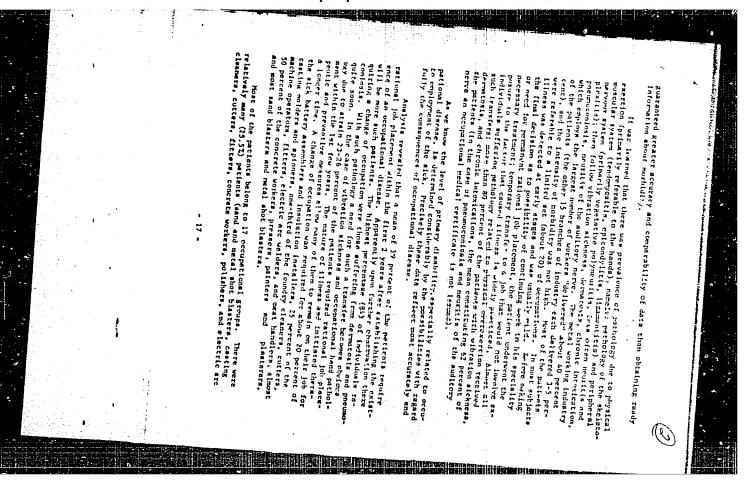
DATE PUBLISHED 70

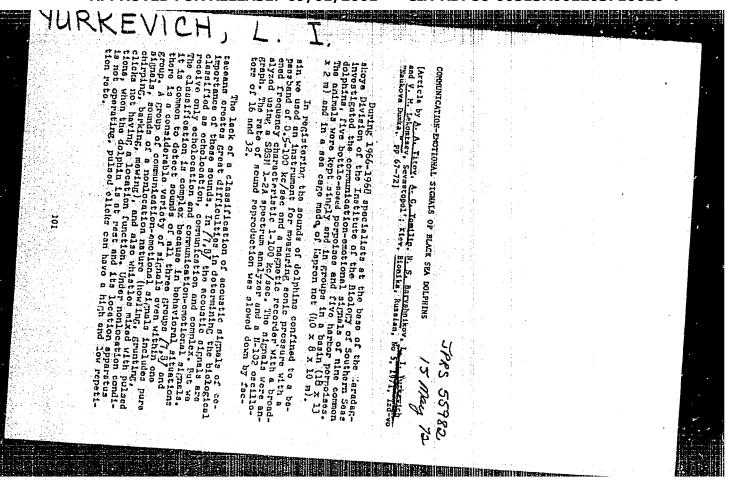
SUBJECT AREAS—CHEMISTRY

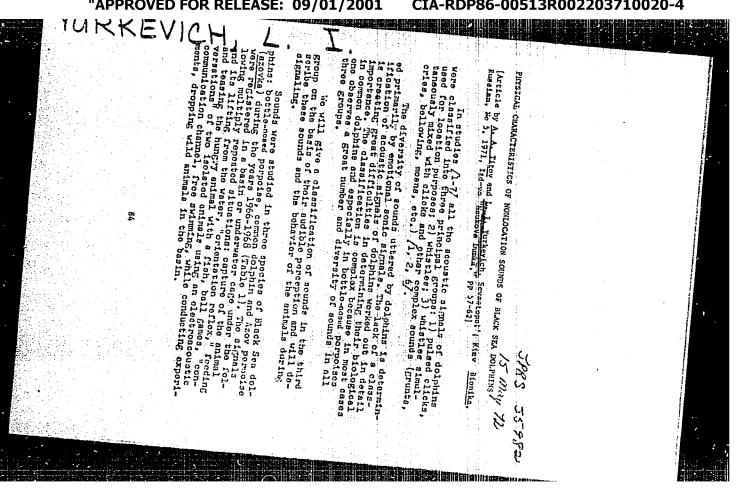
TOPIC TAGS-COBALT COMPLEX, OXIME, URACIL, CHEMICAL REACTION MECHANISM

CONTROL MARKING-NO RESTRICTIONS


DOCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME--2000/0877


STEP NO-UR/0079/T0/040/003/0703/0704


CIRC ACCESSION NO-APO124540


UNCLASSIFIED

高温量 医神经虫虫 2/2 010 - II.: UNCLASSIFIED CIRC ACCESSION NO--APO124540 PROCESSING DATE-300CT70 AUSTRACT/EXTRACT--(U) GP-0-ABSTRACT. REACTION OF HYDRIDES OF COBALCXIMES WITH URACIL DERIVS. RESULTS IN INCLUSION OF CO IN THE URACIL RING IN REACTIONS USING HYDRIDES OF DIMETHYL, AND DIPHENYLGLYOXIMATE COMPLEXES OF CO WITH PYRIDIEN AND PH SUB3 P LIGANDS, AND URACIL, URIGIEN. 2 PRIME, AHNYDROURIDINE, OR URIDINE, 5 PRIME, PROSPHATE AS THE OTHER REACTANT. THIS AFFORDS A NEW ROUTE TO POLYNUCLEOTIDE HODIFICATIONS. REACTION OF 0.28 G I IN AQ. ETDH UNDER N WITH A SOLN. OF C. 0167 G NABH SUB4 IN ETOH FORMED A BLUD GREEN HYDRIDE; 0.0445 G URACIL IN H SUB2 O WAS ADDED AND THE MIXT. KEPT 45 MIN TO PPT. 75PERCENT II. THE REACTION MECHANISM WAS DISCUSSED. NAUCH. ISSLED. VITAM. INST., USSR. FACILITY: YSES. UNCLASSIFIED

USSR

YURKEVICH, N. I., Editor

UDC: None

Radiotekhnika (Electronics Engineering), Khar'kov, Izd-vo Khar'kov State University imeni Gor'kiy, No 20, 1972, 232 pp

Abstract: Most of the 33 articles in this collection deal with the diffraction or dispersion of electromagnetic radiation incident on the diffraction radiation of a point charge moving over a grating, the diffraction of spherical waves on a conic surface, the diffraction of an electromagnetic wave on a complex grating, the dispersion of electromagnetic waves from an elliptical rod in a wavesuide, and the like. These hint also at another common thread and employ sophisticated mathematical approaches. The final section of the book consists of abstracts of the articles.

1/9

경기에 USSR 에 있는 그 것도 보고 있는 것이 되었다. 그 사람들이 가장하는 것은 것을 하는 것이 되었다. 사람들은 물을 보고 있는 것이 되었다. 그 것은 것이 되었다. 그 것은 것을 보고 있는 것이 되었다. 그 것은	
YURKEVICH, N. I., Editor	_
Radiotekhnika (Electronics Engineering), Khar'kov, Izd-vo Khar'kov State University imeni Gor'kiy, No 20, 1972, pp 231-232	
Translation:	
TABLE OF CONTENTS	
Theory of Diffraction Radiation	
V. Ye. Budanov and A. A. Kirilenko, "Radiation of an Electron Beam on a Staircase Grating"	
A. S. Sysoyev, "Diffraction Radiation of a Foint Charge Moving Over a Ribbon Grating".	·
Ye P Gaa	
Ye. B. Sidorenko, "Linear Self-Congruent Dif- fraction Radiation Theory".	:
2/9	
시간 후에 가는 생각 보다는 것이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. 발표 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	0
androgados de la composição de la composição (<mark>-, 22, -</mark> , 10, 12). A la cidada de la composição de la composiç	

USSR		1.死人与人性理学撰纂记集(2) 1701年1月2日 - 1887年 - 18			2.50
YURKEVICH, imeni Gor	N. I., Radiotekhnika kly, No 20, 1972, pp	, Khar'kov, Izd-vo K 231-232	haz'kov State Uni	versity	ه په
A. Electroma, in a Sinu.	I. Tsvyk and L. I gnetic Radiations soidal Trajectory	· Tsvyk, "Excitat by an Electron Be Over a Diffraction	ion of am Moving		
or Resonan	nce-Type Oscillator	lf-Congruence of a	the Theory	24	
tion for a	I. Gayduk, "Self-C Charged Medium".	ongruent Relativi	stic Equa-	. 32	
V ·	I. Gayauk and Ye.	and the same and the		• 38	
			, , , , , , , , , , , , , , , , , , ,	• 44	
3/9					
			HEIII THE		

	Let USSR	=
	YURKEVICH, N. I., Radiotekhnika, Khar'kov, Izd-vo Khar'kov State University	
	Diffraction and Propagation of Electromagnetic Waves	
	of Spherical Waves From a Conic Surface of Special Parties	
	Conducting Waveguide by a Dipole" Ring Spirally	
	of an Electromagnetic Wave on a Grating of Complex Profile" . 71	
	N. S. Butenko and L. N. Litvinenko, "Longwave From a Two-Element Grating"	,
-	Diffraction Field Near a Double Greating!" Structure of the	
	경기는 생물이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. 그 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	٠

THE USSR OF THE PROPERTY OF TH	i
YURKEVICH, N. I., Radiotekhnika, Khar'kov, Izdo-vo Kharkov State University	
waveguide,	
tromagnetic Waves on a Fine Elliptical Rod in a Worsen	z.
V. N. Koshparenok and S. V. Chervoya "Page 11.	
V D Wardel	
V. D. Khadzhinov, "Diffraction of an E-Folarized Plane Wave by an Infinitely Thin, Longitudinally Slotted Cylindrical Waveguide With a Coaxial Metal Rod".	*
S. A. Masalov and Yu. T. Repa, "Wave Diffraction 5/9	
2/9	

USSR					<u></u>	
YURKEVICH, N. I., Radio imeni Gor'kiy, No 20, 1	tekhnika, Kham	,,,,,				
220ml Gor Kly, No 20, 19	972, pp 231-23	S YOA' IEG-AO	Khar kov	State Univ	ersitu	
A T Adoma					-20209	ě
A. I. Adonina "Crossed Gratings on	H. M. Andr	usenko, and	d B. G.	Sidononica		
					• • 127	
O. A. Tret'yak Resonators With Diffr Types of Periods	ov and A. A.	Shmottle	() T	•	• 14/	
Resonators With Diffr Types of Periodic Str	action Grati	ngs Using	Charact	tigating		
	the state of the s			and the second s		
V 8' 77 1					. 131	
V. F. Kravchen Grating on the Amplif Crystal Layer of Fini	ication of a	of a Two-E	lement, 1	ietal		
Crystal Layer of Fini	te Thickness	"Uniaxial	Plane-Pa	rallel		
V P V					. 142	
V. F. Kravchenk and V. K. Yarmolyuk, ' Problems by the Method	o, V. L. Rva	chev, A. P	. Slagar	diviled		
Problems by the Method	of Repunct	External 1	lectros	tatic		
					. 150	
A. A. Kirilenko of Some Types of Infin	and S. A. M	asalov uo	Sammer de la 1		1 130	
of Some Types of Infin	ite Products	"	omputat:	Lon	155	
				• • •	•	
	- 24 -					
						î.
	Militaria de la compansión de la compans					্রি ক্র জন্ম

USSR			
YURKEVICH, N. I., Radiotel	khnika, Khar'kov, Izd-vo Kha	ant have as	, a
S. S. Tret'yako Error of the Parabolic Value Problem"	va, "The Problem of Est Equation Method in One	Inating the	-
, -		Doundary	:
		ectrum of	
C = C	M. Andrusenko, V. M. 1 on of Electromagnetic Wa	Komolov, and aves by a	
Asymmetrical Transverse	"Complex Grooved Waves Cross Sections"	Suides With	Maryly,
Plane-Parallel Waveguides Thickness" 7/9	"Open Structure of Reco	tangular and	
7/9		" bi finite ' · · · · 185	

USSR		9-20
YURKEVICH, N. I., Rad	liotekhnika, Khar'kov, Izd-vo Khar'kov State University	
23, NO 20,	1972, pp 231-232 Lad-vo Khar kov State University	
V. Ye. Buda Frequencies of Sym Single-Ring Coaxial	nov and V. F. Shinkarenko, "Characteristic metrical Nagnetic Oscillations in a	
A. A. Yantse	evich, "Stochastic Theory of Rays"	•
- Americal	Investigation of Diffraction	
"Effect of Losses on Metal Gratings With	40.0.00	
A. V. Kamyshaman Open Resonator Was	n and V. V. Kamyshan, "Excitation of veguide With a Coupling Aperture"	
8/9	aperture"203	
	- 25 -	

00,	3R					
YU	REVICH, N. I. Bad	1atathur.			*	
1M6	RKEVICH, N. I., Rad oni Gor'kiy, No 20,	1972, pp 231-22	kov, Ied-	vo Khar'k	ov State	Untromes
						oniversity
	Diffraction	Radiation Gene		- I		
					· · · · · · · · · · · · · · · · · · ·	
O. A	1. M. Balakl	itskiy, V. G.	Kurin n			
Pecu	Tret'yakov, as liarities of a l	nd V. P. Shest	obalon. "	K. Skr	ynnik,	
1000	=32 01 2 1	MIII raction Ra	diation c	Some Obe	rationa	ıl
	70 TT	化二二二苯二丁二苯基磺基乙基		energi 101	•	
	D 77 00					• • 208
	B. K. Skrynni trum of a Diffra					• • • 208 e
	B. K. Skrynni trum of a Diffra Abstracts					e 216
	B. K. Skrynni trum of a Diffra					• • • 208 e
	B. K. Skrynni trum of a Diffra					• • • 208 e • • 216
	B. K. Skrynni trum of a Diffra					• • • 208 e • • 216
	B. K. Skrynni trum of a Diffra					• • • 208 e • • 216
Spec	B. K. Skrynni trum of a Diffra					• • • 208 e • • 216
Spec	B. K. Skrynni trum of a Diffra					• • • 208 e • • 216

USSR

UDC [537.226+537.311.33]:[537+535]

YURKEVICH, V. E., and ROLOV, B. N.

"Permittivity of Ferroelectric Solid Solutions"

Uch. zap. Latv. un-t (Scientific Notes of Latvia University), 1971, 147, pp 35-49 (from RZh-Fizika, No 1, Jan 72, Abstract No 1YE1253 by authors)

Translation: Within the framework of the thermodynamic theory of ferroelectric solid solutions the authors consider the behavior of permittivity, with allowance for variation with concentration and temperature. The theoretical results obtained are compared with available experimental data for series of ferroelectric solid solutions. The concentration dependence of the Curie-Weiss constant is obtained. A theoretical valuation is made of the halfwidth of the permittivity curve for solid solutions, which correctly reflects experimental regularities.

1/1

USSR

UDC 542.61

ROZEN, A. M., and YURKIN, V. G.

"Reaction of Di-2-ethylhexylphosphoric Acid and Its Uranyl Salt With Solvents. IV. Solutions of $(HR)_2$ and $UO_2(HR_2)_2$ in Carbon Tetrachloride"

Leningrad, Radiokhimiya, Vol 15, No 6, 1973, pp 862-864

Abstract: The activity coefficients of di-2-ethylhexylphosphoric acid (HR)2 and its uranyl salt $\rm UO_2(HR_2)_2$ were determined from the vapor densities in $\rm CCl_4$ solutions at 10, 25, and 40°C. Heats of mixing have been determined. It was shown that large negative nonideality of the solutions with a rather small negative enthalpy of mixing can be explained by the athermal entropy effect due to the dimerization of (HR)2 which leads to enlarged molecules and decreased polarity coupled with lower reactivity towards $\rm CCl_4$. The enthalpy of a weak chemical reaction of $\rm CCl_4$ with (HR)2 and $\rm UO_2(HR_2)_2$ was evaluated.

1/1

- 63 -

UDC 542.61

ROZEN, A. M., and YURKIN, V. G.

"Reaction of Di-2-ethylhexylphosphoric Acid and Its Uranyl Salts With Solvents. V. Solutions of (HR)2 and UO2(HR2)2 in Chloroform"

Leningrad, Radiokhimiya, Vol 15, No 6, 1973, pp 864-866

Abstract: The activity coefficients of di-2-ethylhexylphosphoric acid (HR)₂ and its uranyl salt $\rm UO_2(HR_2)_2$ were determined from the vapor densities in CHCl₃ solutions at 10, 25, and 40°C. Heats of mixing were determined. It was shown that large negative nonideality of the solutions can be explained by the athermal entropy and chemical reaction of (HR)₂ and $\rm UO_2(HR_2)_2$ with CHCl₃; the latter is somewhat weaker in comparison to analogous systems with TBP because of the dimerization of (HR)₂. The enthalpy of the chemical reaction of CHCl₃ with (HR)₂ and $\rm UO_2(HR_2)_2$ was evaluated.

1/1

1/2 022 TITLE-PROPERTIES OF PYRIDINECARBOXYLIC ACIDS HAVING CARBOXYL AND CARBONYL UNCLASSIFIED PROCESSING DATE--300CT70 AUTHOR-(04)-YURKINA, L.P., RUSYANOVA, N.D., LIPATOVA, L.F., KONDRATOV,

COUNTRY OF INFO-USSR

SOURCE-KHIM. GETEROTSIKL. SOEDIN. 1970, (3), 390-3

DATE PUBLISHED 70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS-PYRIDINE, CARBOXYLIC ACID, TITRATION, MOLECULAR STRUCTURE, IR SPECTRUM, UV SPECTRUM, CARBOXYL RADICAL, CARBONYL RADICAL

CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME-2000/0684

STEP NO--UR/0409/70/000/003/0390/0393

CIRC ACCESSION NO--AP0124356

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

A SANDANIA KANDANIA MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN M KANDAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARA MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN MARAMBAHAN

USSR

UDC 616.34-022-078:576.8.083.33

L. P., LITINSKIY, YU. I., and PUCHKOVA, A. V., Department of Infection Pathology, Central Scientific Research Institute of Epidemiology and Second Clinical Hospital for Infectious Diseases, Moscow

"Use of Modern Liquid Enrichment Media to Diagnose Intestinal Infections"

Moscow, Laboratornoye Delo, No 9, 1971, pp 544-547

Abstract: A comparison was made of the value of selenite broth and medium M (magnesium) in diagnosing acute intestinal infections. Medium M was prepared by mixing together three solutions: (i) peptone, NaCl, Kh2PO4, yeast dialysate, and distilled water; (ii) MgCl2 and distilled water; (iii) 0.15% aqueous solution of brilliant green. A total of 1,263 coprological analyses were made of stools obtained from adults hospitalized with diagnoses of food poisoning, acute dysentery, gastroenterocolitis, etc. Positive identifications were made in 107 cases. Shigella strains were identified in 10 cases (9 S. sonnei strains and 1 S. flexneri strain) while Salmonellas belonging to 13 serotypes of groups B, C, D, and E were identified in 97 cases. Most of the Salmonellas identified were from group C. The two media were of equal value except that three more cultures were isolated from the M medium than

022

UNCLASSIFIED

PROCESSING DATE-300CT70

CIRC ACCESSION NO--APO124356 ABSTRACT/EXTRACT-(U) GP-0-ANH APPROVED FOR RELEASE: 20%41/2001 THE TAIR TOPS -0054 3R002203710020-4"
300 TO MINUS 400 MV, WHICH ARE CHARACTERISTIC OF THE MOL. STRUCTURE. THE CHARACTERISTICS OF THE IR AND UV SPECTRA OF THE TITLE COMPDS. ARE FACILITY: VOST. NAUCH. ISSLED. UGLEKHIM. INST., SVERDLOVSK, USSR.

UNCLASSIFIED

USSR

YURKO, L. P., et al., Laboratornoye Delo, No 9, 1971, pp 544-547

from the selenite broth. The M medium is particularly recommended for diagnostic purposes because it is convenient, cheap, and can be stored.

USSR

UDC 621.165:62-752

SAMOYLOVICH, G. S., NITUSOV, V. V., and YURKOV, E. V.

"Investigation of the Influence of the Profile Shape of the Working Blades Upon the Excitability of Tangential and Axial Low-Multiple Forced Oscillations"

Tr. Mosk. Energ. In-ta (Works of the Moscow Power Engineering Institute), No 99, 1972, pp 108-113 (from Referativnyy Zhurmal, Turbostroyeniye, No 5, 1972, Abstract No 5.49.35)

Translation: In the work are presented the results of an experimental investigation of the forced oscillations of active-profile blades E5833A from an irregularly circular low-multiple source ($K_N=2-8$), situated behind the blades. The possibility of evaluating the variable acrodynamic forces acting upon the blade with such excitation is shown. 4 figures. 5 references.

1/1

71

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

i estinente de la companya della companya della companya de la companya della com

USSR

VDC 619:616.9-084

BAKUJOV, I. A. and YURKOV, G. G., All-Union Scientific Research Institute of Veterinary Virology and Microbiology

"Anti-Epizootic Measures in Specialized Enterprises of the Industrial Type"

Moscow, Veterinariya, No 6, Jun 71, pp 45-58

Abstract: More than 100 animal diseases are known and it is impossible to eradicate them universally. Specific prophylactic measures have been developed for one group of infectious diseases (anthrax, emphysematous carbuncle, brucellosis, erysipelas, plague, swine fever, leptospirosis, foot-ami-mouth disease, rabies, Aujeszky's disease, smallpox, salmonellosis, and others). Another group of infectious diseases has been studied relatively little, with no specific prophylactic measures in existence, but a complex of measures for prophylaxis and eradication does exist (tuberculosis, necrobacillosis, vibriosis, infectious atrophic rhinitis, dermatomycosis and others). Another group of diseases has been insufficiently studied and a system of effective practical measures is being developed for them (infectious cattle rhinotracheitis, cattle diarrhea, infectious gastro-enteritis of swine, and others). A fourth group includes exotic infections which are widespread in other countries and could be carried into the Soviet Union in one way or another (African swine fever,

1/2

USSR

BAKULOV, I. A., et al, Veterinariya, No 6, Jun 71, pp 45-58

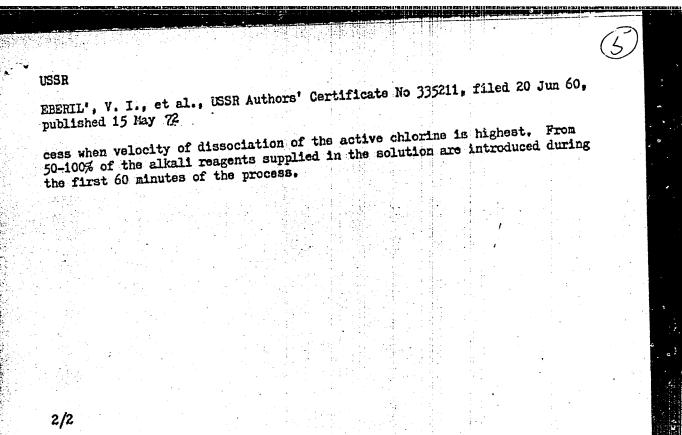
vesicular stomatitis, catarrhal fever, and other diseases). Large accumulations of farm animals may change veterinary-sanitary conditions and may enhance the possibility of introducing infectious disease. The most common hance the possibility of introducing infectious disease. The most common measures (diagnostic examination, vaccination, and general measures) which different types of animal and poultry farms in the Soviet Union should have davailable for protection of farm animals and poultry are presented. Additional research remains to be done in the development of measures and new devices research remains to be done in the development of aerosol generators and a method for aerosol vaccination of poultry, particularly against Newcastle disease, is mentioned. The newly developed method is extremely successful and economical and has been introduced on many poultry farms. Also, aerosol vaccination against swine fever has been very successful in farm tests.

2/2

_ 94 _

ussr

wc 621.357.12.661.418(088.8)


EBERIL', V. I., YELINA, L. M., SHKRED, V. V., TSEYTLIN, R. I., YURKOV, L. I., GURVANOV, L. S., KORYAGIN, V. I., PANCHENKO, M. B., and SHANTALIN, A. N.

"Process of the Decomposition of Active Chlorine in Solution"

USSR Authors' Certificate No 335211, filed 20 Jun 60, published 15 May 72 (from Referativnyy Zhurnal -- Khimiya, No 8, (II), 1973, Abstract No 81254P)

Translation: A process is patented for the dissociation of active chlorine in solutions by means of heating, which is distinguished in that, in order to increase the velocity of dissociation, a process occurs in order to maintain a stable pH value for the solution equal to 5.5 to 6.5. It is proposed to carry out the process by bubbling gases which have been pre-heated and humidified to 60-100% (relative to the temperature of the solution). The value of the pH of the solution during the process starys in the region 5.5 to 6.5 by the addition of alkaline or alkali salts to the solution. The temperature of the solution is confined to the region 60-100°C. The process is carried out either as a batch or as a continuous system, for example, for the flow of the pre-heated solution across a step-wise capacity pattern. The solution is made alkaline at the beginning of the process; that is, the most rapid reduction in the pH of the solution occurs during the first stage of the pro-1/2

_ 4 _

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

Acc. Nr: AP0047160

Ref. Code: UR 0246

PRIMARY SOURCE: Zhurnal Nevropatologii i Psikhiatrii, 1970,

Vol 70, Nr 2, pp /9/-195

CONCERNING THE QUANTITATIVE EVALUATION OF THE BRAIN VEIN TONE ACCORDING TO THE DATA OF ORBITAL PLETHYSMOGRAPHY

N. N. Yurkov

The author used the method elaborated by B. Votchal and V. P. Zhmurkin for the estimation of the brain vein tone. According to this method pressure of the neck (20—30 mm of the Hg column) brings on dilatation of the cerebral vessels, which is expressed in an orbital plethysmogramm by a simple increase in the volume of the column. According to the amount of this increase the brain vein tone is then being evaluated. The present study permits to establish a parallelism between the vascular reaction to the neck pressure and the reactions to other stimula, as well as to distinct correlations between the increase in the plethysmographical curve and the increase in the pulse volume. These regularities indicate to the possible reflectory reaction of the carebral vessels in mechanical irritation of the sinocarotid zone, which should be taken into consideration when applying the indicated technique and in evaluating the brain vein tone.

//

reel/frame 19790654 2 pc

1/2 019 UNCLASSIFIED PROCESSING DATE--020CT70
TITLE--PHYSICAL PROPERTIES OF TIN ANTIMONIDE SINGLE CRYSTALS -U-

AUTHOR-(04)-YURKOV, V.A., YEPISHIN, I.G., TUGUSHEV, S.YR., SJSHNIKOV, V.A.

COUNTRY OF INFO--USSR

SOURCE-FIZ. METAL. METALLOVED 1970, 29(1), 108-12

DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--ELECTROMOTIVE FORCE, SINGLE CRYSTAL, TIN COMPOUND, ANTIMUNIDE, HARDNESS, ELECTRICAL CONDUCTIVITY

EMITTEL MAPKING--YO RESTRICTIONS

PROXY RECLIFRAME-1938/0706

STEP NO--UR/0126/70/029/001/0108/0112

CIRC ACCESSION NO--APO105679

tingtASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

PROCESSING DATE--020CT70 UNCLASSIFIED 019 2/2. CIRC ACCESSION NO--APO105679 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE RESULTS OF THE D., MICROHARDNESS, ELEC. COND., AND THERMAL EMF. MEASUREMENTS OF SYSB SINGLE CRYSTALS ARE PRESENTED. . THE AV. D. OF THESE CRYSTALS, DETD. BY THE HYDROSTATIC WEIGHING METHOD, IS 6.81 G-CM PRIMES, WHICH IS SOMEWHERE BETWEEN THE D. OF SN AND THAT OF SB. THE MICROHARDNESS WAS MEASURED ON THE MEASUREMENTS WERE TAKEN FRESHLY CLEAVED SINGLE CRYSTAL PLATELETS. WITH THE INDENTOR PARALLEL AND PERPENDICULAR TO THE CLEAVAGE PLANE OF VALUES RANGING FROM 130-140 AND 80-90 KG-MM PRIME2 WERE THE SAMPLES. OBTAINED. AT 60-G LOADS, THE MICROHARDNESS VALUES IN BOTH ORIENTATIONS WERE ABOUT THE SAME. ELEC. RESISTIVITY WAS MEASURED BY THE CONVENTIONAL COMPENSATION METHOD AT 20-200DEGREES. THE RESISTIVITY OF ALL THE THE RESISTIVITY PARALLEL TO SAMPLES HAD A TYPICALLY METALLIC CHARACTER. THE CLEAVAGE PLANE AT 20DEGREES WAS 26.6 TIMES 10 PRIME NEGATIVES DHM-CH: AT THE SAME TEMP. THE RESISTIVITY PERPENDICULAR TO THE CLEAVAGE PLANE WAS 65.6 TIMES TO PRIME NEGATIVES OHM-CM. THIS MEANS THAT THE RESISTIVITY PERPENDICULAR TO THE CLEAVAGE PLANE IS BY 2.4 TIMES LARGER THAN THAT PARALLEL TO THE CLEAVAGE PLANE. WITH INCREASING TEMP. THE RESISTIVITY ANISOTROPHY SOMEWHAT DECREASES. THE RESISTIVITY OF PULYCFYST. SAMPLES HAD AN INTERMEDIARY VALUE, AND WAS 36.8 TIMES 10 PRIME REGATIVES DHM-CM AT ZODEGREES. IT WAS DIFFICULT TO DETAIN ACCURATE THERMAL EMF VALUES, AND THE RESULTS OBTAINED VARIED BY IT IS CONCLUDED THAT AT CONSIDERABLE ANISOTROPY IN THE RESISTIVITY (IS GREATER THAN 200PERCENT). THE THERMOELED. PROPERTIES OF THE SINGLE CRYSTALS ARE PRACTICALLY ISOTROPIC.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

UNCLASSIFIED

USSR

Unc: 669.017:53?

YURKOV, V. A., YEPISHIN, I. G., TUGUSHEV, S. YU., and SCSHNIKOV, V. A., Penza Polytechnic Institute

"Physical Properties of SnSb Single Crystals"

Sverdlovsk, Akademiya Nauk SSSR, Fizika Metallov i Metallovedeniye, Vol 29, No 1, Jan 70, pp 108-112

Abstract: The results of an experimental investigation of certain physical properties of SnSb crystals are presented. The procedure for producing samples is described in detail. Density, microhardness, electric conductivity, and thermoelectric force were measured. Density was determined by hydrostatic weighing at room temperature. The average density of SnSb plates was 6.81 g/cm³. The microhardness was measured with a PNT-3 instrument for two indentor positions, one normal and one parallel to the surface. The results are presented graphically. The electric resistance was measured by the usual compensation method, with currents parallel and normal to the cleavage surface. The thermoelectric properties were determined by clamping the sample between two copper blocks.

1/2

USSR

YURKOV, V. A., et al. Akademiya Nauk SSSR, Fizika Metallov i Metallovedeniye, Vol 29, No 1, Jan 70, pp 108-112

The temperature of one was maintained at 16° C, while that of the other was varied between 16 and 200° C. The Δ T was measured by a thermocouple with \pm 0.5° accuracy. The thermoelectric force was measured for two directions of the temperature gradient, one parallel and the other normal to the cleavage surface. The results show that the thermoelectric properties of single crystals are practically isotropic. Crig. art. has: 5 figures and 1 formula.

2/2

- 45 -

and the state of t

USSR

UDC: 519.2

YURKOV, Ye. F.

"Application of Nonlinear One-Dimensional Transformations to the Problem of Approximating a Function From its Values at Randomly

Moscow, Primeneniye nelineynykh odnomernykh preobrazovaniy k zadache approksimatsii funktsii po yeye znacheniyam v sluchayno vybrannykh tochek (cf. English above), Institute of Problems in Data Transmission, Academy of Sciences of the USSR, 1972, 6 pp, bibl. of 2 titles (manuscript deposited in VINITI, No. 5370-73 Dep. from 8 Jan 73) (from RZh-Kibernetika, No. 5, May 73, abstract No 5V276 Dep by the author)

Translation: A method of nonlinear approximation is proposed which may find application in problems of forecasting and pattern recognition. The method is based on evaluating one--dimensional statistical characteristics and therefore does not require large samples, which is important in the solution

1/1

- 36 -

USSR

YURKOV, YE. V.

"Application of Point Microthermistors in the Study of Cocurrent Flows at Small Reynolds Numbers"

San. tckhnika. Mezhved. resp. nauchn. sb. (Sanitary Engineering -- interdepartmental republic scientific collection of works), 1969, vyp. 8, pp 137-139 (from RZH-Metrologiya i Izmeritel'naya Tekhnika, No 1, Jan 70, Abstract 1.32.756)

[No abstract]

1/1

1/2 020 UNCLASSIFIED PROCESSING DATE--20NOV70
TITLE--LACTIC DEHYURDGENASE ISDENZYMES IN THE URINE OF CHILDREN WITH

CHRONIC PYELONEPERITIS -U-

AUTHOR-(C2)-PUGACHEVA, V.I., YURKOV, YU.A.

CCUNTRY OF INFO-USSR

SOURCE-PEDIATRIYA 49(2): 44-84, 1970

DATE PUBLISHED ---- 70

SUBJECT AREAS-BILLCGICAL AND MEDICAL SCIENCES

TOPIC TAGS--LACTATE BEHYDROGENASE, ISCENZYME, URINE, PEDIATRICS, MEPHRITIS, DIAGNOSTIC METHODS

CONTROL MARKING-NO RESTRICTIONS

DUCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/0341

STEP NU--UR/0546/70/049/002/0044/0048

CIRC ACCESSION NO--APOL35834

JEGLASSIEUU -

PROCESSING DATE-- 20NOV70 UNCLASSIFIED C 20 CIES ACCESSION NO--AP0135834 ABSTRACT. THE TECHNIQUE OF DETERMINING TOTAL BSTRACI/EXTRACT-- (U) GP-S-ACTIVITY AND ISGENZYMES OF LACTIC DEHYDROGENASE IN THE URINE IS DESCRIBED. BASING ON THE INVESTIGATION OF THIS ENZYME IN 38 HEALTHY CHILDREN IFROM 3 TO 14 YEARS ULDI THE STANDARDS OF THE TOTAL ACTIVITY AND ISOENZYMES IN THE URINE WERE ELABORATED, AND IN 62 PATIENTS WITH CARCNIC PYELENEPHRITIS THE DIAGNOSTIC VALUE OF THE ENZYME WAS STUDIED. WITH EXACERBATION OF CHRONIC PYELCNEPHRITIS ALL 5 FRACTIONS OF LACTIC DEHYDROGENASE CAN BE DETERMINED. IN SEVERE BILATERAL AFFECTION MARKED PREVALENCE OF CATHODE FRACTIONS WAS OBSERVED. DURING REMISSION THE SPECTRUM OF ISOENZYMES AND TOTAL ACTIVITY APPROACHED THAT OF NORMAL IN PATIENTS WITH GLOGERULAR AFFECTION OF THE KIDNEYS THE SPECTRUM OF ISOENZYMES IS CHARACTERIZED BY A MARKED PREVALENCE OF ANODE FACILITY: DEP. CHILD DIS., MOSCOW, MED. STOMATOL. INST., POSCOW, USSR.

USSR

GERSHUNI, G. Z., ZHUKHOVITSKIY, YE. M. WILLKOY, YU. S.

"Concerning Convective Stability in the Presence of a Periodically Changing Parameter"

Prikladnaya Matematika i Mekhanika, Vol 34, No 3, 1970, pp 470-480

Abstract: Convective stability is parametrically affected primarily in two ways: modulation of the equilibrium temperature gradient and modulation of the field of external forces. Modulation of the temperature gradient can be effected by means of periodic change, with time, of the temperature at the boundaries of a cavity containing a fluid. Modulation of the field of external forces (the gravity field) originates in the presence of vertical vibrations of the fluid. These mechanisms of parametric action generally differ. By virtue of the temperature skin effect, periodic change of the temperature at the boundaries of the cavity with time brings about modulation of mass (convective) force only in a certain layer, the thickness of which decreases as the frequency incheases. In the case of vertical vibrations of a cavity filled with fluid, on the 1/3

- 78 -

CIA-RDP86-00513R002203710020-4"

APPROVED FOR RELEASE: 09/01/2001

GERSHUNI, G. Z., et al, Prikladnaya Matematika i Mekhanika, Vol 34, No 3, 1970, pp 470-480

other hand, modulation of the convective force is effected (in an incompressible fluid) uniformly throughout the entire volume. This distinction vanishes at comparatively low frequencies, when the thickness of the thermal skin effect is sufficiently large in comparison to the characteristic linear dimension of the cavity. In this limit case the two methods of parametric action are essentially equivalent. The present work continues an investigation published earlier, dealing with the stability of a flat horizontal layer of liquid with free boundaries, with periodic modulation of the vertical temperature gradient, special attention being directed to the low-frequency range, when the temperature skin effect may be disregarded. The present article deals with the effect of parametric action (modulation of the vertical temperature gradient or the gravity field) upon the stability of equilibrium in a flat horizontal layer with free and solid boundaries as well as in a vertical circular cylinder. By means of the Kantorovich method the equation system for perturbations is reduced to a system of conventional equations for time-dependent amplitude equations. Periodic solutions of these equations for the case of sinu-2/3

USSR

GERSHUNI, G. Z., et al, Prikladnaya Matematika i Mekhanika, Vol 34, No 3, 1970, pp 470-480

soidal modulation were obtained on a digital electronic computer by the Runge-Kutta method. The stability boundaries are determined in relation to the modulation parameters. The limiting case of high frequencies is discussed.

3/3

- 79 -

wc 632.95

YUKHTIN, N. N., ANDREYEVA, YE. I., MEL'NIKOV, N. N., SKALOZUEOVA, A. V., PRONCHENKO, T. S., SHKURATOVA, G. N., YURKOVA, A. G., KURGANOV, L. B., NOVIKOVA, R. G., and OBUKNOVA, V. I.

"Phenylmercury and Hexylmercury"

V sb. Khim. sredstva zashchity rast. (CHemical Agents for Plant Protection -- collection of works), vup 1, Noscow 1970, pp 145-150 (from RZh-Khimiya, No 11, Jun 72, Abstract No 11N426)

Translation: Seed disinfectant dusts — hexylmarcury (1% EthgCl, 18-22% hexachlorobenzene, and up to 20% (-hexachlorocyclohexane) and phenylmercury (1% EthgCl and 18-22% hexachlorobenzene) — are officially authorized in the Soviet Union for use against the same plant diseases as those controlled by granosan. About half the EthgCl expended when granosan is used is expended when phenylmercury and hexylmercury are used. Phenylmercury can be used when phenylmercury and hexylmercury are used. The new disinfectants show against fusarium wilt and helminthosporiosis. The new disinfectants show promise as agents for controlling dwarf wheat infections and wheat kernel smut. The nest promising signal dyes for the disinfected grain are Rhodemine C, methylene blue, acid blue-black and direct red 20.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

USSR

UDC 632.95

5

HEL'NIKOV, N. N., ANDREYEVA, YE. I., PRONCHEURO, T. S., SKALOZUBOVA, A. V., SIKURATOVA, G. N., KURGANOVA, I. B., YURKOVA, A. G., OBUKNOVA, V. I., EDO. NOVIKOVA, R. G.

"Concerning Liquid Organomercury Seed Diginfectants"

V sb. Khim. sredetva zashchity rast. (Chemical Agents for Plant Protection -- collection of works), vyp 1, Moscow, 1970, pp 150-155 (Fron EZh-Khimiya, No 11, Jun 72, Abstract No 111/27)

Translation: From the results of hothors and small-plot field tests of non-Soviet and experimental Soviet camples of liquid organomercury functions, as well as with consideration to non-Soviet research and practical use in such fungicides, the authors conclude that liquid preparations deserve attention as promising forms for use as seed disinfectants in Soviet agriculture.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

UDC 613.2+615.917:632.951.2

VOLOTNYY, A. V., and YURKOVA, Z. F., Laboratory for Hygiene and the Individual Toxicology of Insecticides (Director, Doctor of Medical Sciences Ye. I. Spynu) and Laboratory of the Analytical Chemistry of Pesticides (Manager, Doctor of Biological Sciences M. A. Klisenko) All-Union Scientific Research Institute of Hygiene and the Toxicology of Pesticides, Polymers, and Plastics, Kiev

"An Evaluation of the Toxicology and Hygiene of Gardona, a New Organo-

Moscow, Voprosy Pitaniya, No 6, Nov/Dec 73, pp 60-65

Abstract: The toxicity of gardona was shown to be rather low (the subthreshold dose is 0.6 mg/kg) but having a wide range of effects. The toxicological properties are more advantageous than those of most other organophosphorus compounds. It does not accumulate in the tissue to any significant degree and will not be absorbed through the skin. The residual amounts of gardona on cabbage was undetectable 10 days after treatment and on apples, 15-20 days. The residence time depended on the weather. In order to examine chronic exposure to gardona, it was introduced into the stomach where in doses of 15 mg/kg it reduced the activity

- 51 -

USSR

VOLOTNYY, A. V., and YURKOVA, Z. F., Voprosy Pitaniya, No 6, Nov/Dec 73, pp 60-65

of cholinesterase on the average to about 80 percent of that of the control group. In only one case was an increase observed. In doses of 3 mg/kg, the threshold dose, the activity of cholinesterase averaged closer to that of the control group, with both higher and lower values observed. Gardona also influenced the liver and the central nervous system.

2/2

USSR

UDC 615.9.074

KLISENKO, M. A., LEBEDEVA, T. A., and YURKOVA, Z. F.

"Chemical Analysis of Traces of Poisons"

Moscow, Khimicheskiy analiz mikrokolichestv yadokhimikatov (cf. English above), Meditsina, 1972, 312 pp (from Khimicheskiy analiz mikrokolichestv yadokhimi-katov, pp 2-5, 308-312)

Translation: This book is a handbook on the analysis of traces of poisons. On the basis of many years of experience in the field of analyzing traces of poisons, the authors have included the most sensitive, reliable and simple chemical procedures for analyzing poisons in the air, water, soil, food products, and biological material in this book.

The book opens with a chapter in which the theoretical principles of the basic poison analysis techniques are discussed: photometric, spectrophotometric, polarographic and chromatographic.

In the book procedures are presented for determining all of the most widespread groups of poisons: organophosphorus, organochlorine, copper-containing, 1/21

- 5 -

KLISENKO, M. A., et al., Khimicheskiy analiz mikrokolichestv yadokhimikatov, Meditsina, 1972, 312 pp (from Khimicheskiy analiz mikrokolichestv yadokhimikatov, pp 2-5, 308-312)

mercury-containing, dinitrophenols, carbamates and dithiocarbamates, poisons of plant origin and others. The procedures for analyzing herbicides are put in a separate chapter.

The description of the analysis procedures is preceded by brief information on the physical-chemical properties of the compounds. At the end of the book there is information about the limiting allowable poison concentrations in the air and water and also the admissible residual amounts of these compounds in food products and forage.

When selecting the reported general theoretical and practical data, we had in mind the interests of those readers who wish to approach the use of the procedures recommended in the book creatively.

The book is designed for chemists and sanitation is physicians at the rayon, municipal and oblast sanitation-epidemiological stations and other specialists working in the field of industrial sanitation chemistry, hygiene of 2/21

USSR

KLISENKO, A. A., et al., Khimicheskiy analiz mikrokolichestv yadokhimikatov, Meditsina, 1972, 312 pp (from Khimicheskiy analiz mikrokolichestv yadokhimikatov, pp 2-5, 308-312)

labor, hygiene of foods, and public and communal hygiene. It will be useful to toxicologists, forensic chemists, biochemists, veterinary doctors, agronomists, and so on.

The book can also be used as a training aid for students of the medical and other institutions of higher learning.

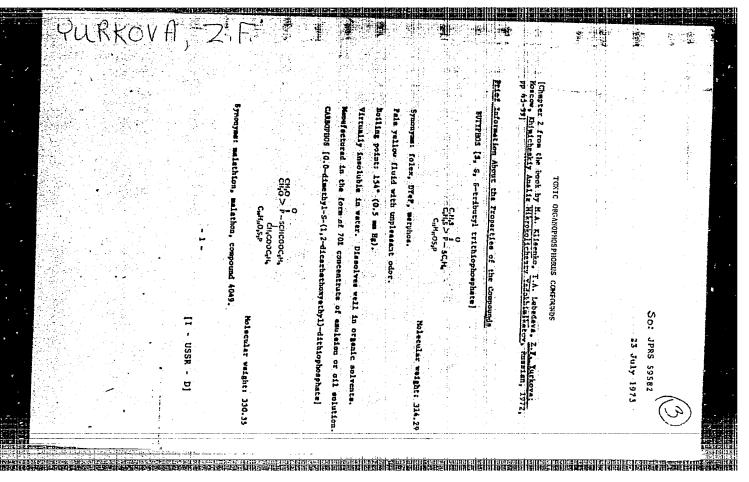
Introduction

At this time the list of chemicals used in the national economy is growing. The application of chemical means of plant protection from pests, diseases and weeds and also chemical means of protecting animals from ectoparasites is acquiring great significance. The research in the toxicity of applied compounds and their normalization in the external environment is expanding simultaneously. The network of laboratories studying the poison content in the air, water, soil, food products and biological material is growing.

- 6 -

KLISENKO, A. A., et al., Khimicheskiy analiz mikrokolichestv yadokhimikatov, Meditsina, 1972, 312 pp (from Khimicheskiy analiz mikrokolichestv yadokhimikatov, pp 2-5, 308-312)

However, basic research to study the biological effect of chemicals, deep penetration into the intimate links of the mechanism of their effect on man, animals and plants, sanitary monitoring of the pesticide content in the environment, the diagnosis and prophylaxis of possible acute and chronic poisonings — these cannot be realized in the absence of reliable methods of qualitative detection and quantitative analysis of these chemicals and the products of their conversion in various media.


The indicated methods must be distinguished by high sensitivity. They must define the residual amounts of pesticides on the level of the maximum permissible concentrations (MPC) or the maximum residual amounts (MRA) which in the majority of cases do not exceed fractions of a milligram per cubic meter of air or per kilogram of food product. Thus, we are talking about analyzing tenths of a microgram of pesticide in a sample in cases where no poison content is admissible, even appreciably smaller amounts. The method must also be selective since several poisons can be present in a sample belonging to various groups of compounds. Transformations of the compounds 4/21

KLISENKO, A. A., et al., Khimicheskiy analiz mikrokolichestv yadokhimikatov, Meditsina, 1972, 312 pp (from Khimicheskiy analiz mikrokolichestv yadokhimikatov, pp 2-5, 308-312)

However, basic research to study the biological effect of chemicals, deep penetration into the intimate links of the mechanism of their effect on man, animals and plants, sanitary monitoring of the pesticide content in the environment, the diagnosis and prophylaxis of possible acute and chronic poisonings — these cannot be realized in the absence of reliable methods of qualitative detection and quantitative analysis of these chemicals and the products of their conversion in various media.

The indicated methods must be distinguished by high sensitivity. They must define the residual amounts of pesticides on the level of the maximum permissible concentrations (MPC) or the maximum residual amounts (MRA) which in the majority of cases do not exceed fractions of a milligram per cubic meter of air or per kilogram of food product. Thus, we are talking about analyzing tenths of a microgram of pesticide in a sample in cases where no poison content is admissible, even appreciably smaller amounts. The method must also be selective since several poisons can be present in a sample belonging to various groups of compounds. Transformations of the compounds

"APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4

Analytical Chemistry

USSR

UDC 632.96

KLISENKO, M. A., LEBEDEVA, T. A., and YURKOYA. Z.

"Chemical Analysis of Trace Amounts of Poisonous Chemicals"

Khimicheskiy analiz mikrokolichestv yadokhimikatov (cf. English above), Moscow, "Meditsina", 1972, 312 pp ill. 1 r. 66 k (from RZh-Khimiya, No 22, Nov 72, Abstract No 22N382)

Translation: The work discusses the simplest, most sensitive and reliable methods of determining poisonous chemicals — organophosphorus, organochlorine, copper-centaining and mercury-containing dinitrophenols, carbamates and dithiocarbamates — in the air, water, soil, feed products and biological materials. In addition, the theoretical principles are given for basic methods of analyzing poisonous chemicals — photometric, photospectrometric, polarographic and chromatographic. Information is given on the physical and chemical properties of chemicals, maximum permissible concentrations in the air and water, and also the permissible residual quantities of the chemicals in food products and animals feed. The authors generalize the experience on extracting chemicals from a sample and purifying the extracts. (From the abstract).

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

UDC 621.317.729

ZUBOV, V. G., and Yurkevskiy, D. A.

"A Measuring Amplifier with High Input Impedance for Low DC Voltages"

Othor i peredach inform. Resp. mezhved sb. (Selection and Transmission of Information. Republic Interdepartmental Collection), 1972, No 32, pp 93-96 (from RZh-Avtomatika Telemechanika i Vychislitel'naya Tekhnika, No 3, Mar 73, Abstract No 3 A299 by the authors)

Translation: An amplifier circuit using field effect transistors for the measurement of DC voltages in the 0-100 microvolt range is described; the instrument has high input impedance. The characteristics of its design are explained and its basic technological characteristics are given. One illustration, eight bibliographic entries.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

estintese reteated to the supplementation of the reteated by the supplementation of the sup

Oscillators and Modulators

USSR

UDC 621.382.32

ZUBOV, V. G., YURKOVSKIY D. A.

"Modulator of Small DC Voltages Based on a Field-Effect Transistor With PN Junction"

Kiev, Otbor i Peredacha Informatsii, Resp. Mezhved. Sb., No 28, 1971, pp 61-64

Abstract: The authors briefly discuss the principal characteristics of a field-effect transistor with gate in the form of a PN junction as compared with those of a conventional bipolar transistor. A modulator circuit for small signals is proposed which utilizes a field-effect transistor with PN junction as a switching device. Expressions are given for the main parameters of the circuit. A modulator circuit was experimentally studied in which the FET with PN junction and P-channel had the following parameters: $S_{max} = 0.3 - 0.35$ mA/V, $U_0 = 2 - 3$ V, $I_3 = 1 \cdot 10^{-9}$ A, and $r_0 = 3$ kQ. It was found that the modulator has an average input impedance of 1.7 MQ when the

1/2

USSR

ZUBOV, V. G., YURKOVSKIY, D. A., Otbor i Peredacha Informatsii, No 28, 1971, pp 61-64

residual zero voltage level ΔU_0 adjusted to the modulator input is no more than 10 μV . If it is assumed that the useful threshold of the modulator is of the order of 5.10⁻¹² A. The conversion factor of the circuit is 0.28. One figure, bibliography of six titles.

2/2

- 44 -

USSR

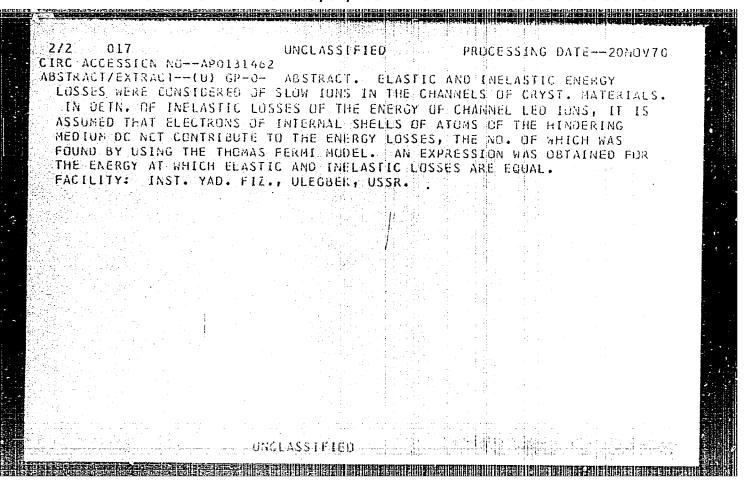
UDC: 621.396.6.049.75.002

YURKOVSKIY, Ye. V., MAKKAVEYEV, A. A.

"Ways to Increase Packing Density in Printed-Circuit Assembly"

V sb. Obmen opytom v radioprom-sti (Experience Pooling in the Radio Industry—collection of works), vyp. 4, Moscow, 1972, pp 29-30 (from RZh-Radiotekhnika, No 8, Aug 72, Abstract No 8V330)

Translation: The paper shows the feasibility of integral estimation of mounting density, and of using statistical and informational criteria and procedures for quantitative estimation and comparison of printed-circuit board designs with respect to the possibility of tracing connections between elements (junctions) located on the printed-circuit boards. Resume.


1/1

- 89 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

PROCESSING DATE--20NOV70 UNCLASSIFIED TITLE--INCLASTIC AND ELASTIC ENERGY LESSES DURING THE CHANNELING OF SLOW ATGES AND ICNS -U-AUTHOR-(GZ)-GURVICE, L.G., YURKULOV, U. COUNTRY OF INFO--USSR SOURCE-F12. TVERC. TELA 1970, 12(5), 1427-30 DATE PUBLISHED-----7C SUBJECT AREAS--PHYSICS TOPIC TAGS-ICN INTERACTION, ELASTIC SCATTERING, INELASTIC SCATTERING, CRYSTAL PROPERTY CENTROL MAKKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0181/70/012/005/1427/1430 PRGXY REEL/FRAME--3004/0375 CIRC ACCESSION NG--APOIST462

THE THEOLOGICAL STATE (EDITIONAL PROPERTY OF THE PROPERTY OF T

USSR

UDC 612.851.014.423

YURKYANETS, Ye. A., and MATYUSHKIN, D. P., Laboratory of Neuromuscular Physiology, Physiological Institute, Leningrad State University

"Electrical Activity of the External Ear Muscles of Man at Rest and During Differentiation of Acoustic Signals"

Moscow, Byulleten' Eksperimental'nov Biologii i Meditsiny, Vol 75, No 3, 1973, pp 16-19

Abstract: Electromyograms were recorded from the superior and posterior auricular muscles in 15 healthy human subjects while they were listening to pairs of sounds (2,000±40 Hz, 20-30 db, either sound lasting 500 msec and separated from the other by 25 msec) delivered at 8-sec intervals and, by pressing one of three buttons, immediately stated that the second sound was identical with or higher or lower than the first sound. Significant activation of the superior and inhibition of the posterior auricular muscles lasting 1.1-1.6 sec were observed in all subjects. The reaction began less than 0.2 sec after delivery of the signal in 64% and 0.3-1.5 sec prior to signal delivery in 36% (conditioned reflex). A good correlation was found between the magnitude of the averaged integrated potentials and the number of erroneous evaluation of the pitch, that is, the more difficult it was to differentiate the two 1/2

- 67 -

USSR

YUKKYANETS, YE. A., and MATYUSHKIN, D. P., Byulleten' Eksperimental'noy Biologii i Meditsiny, Vol 75, No 3, 1973, pp 16-19

tones the greater was the activation of one and inhibition of the other external ear muscle. The response is compared to the cocking of ears by animals. Though it has no acoustic value, it is a reliable sign of attentive listening and may possibly be utilized as an index of the functional state of the auditory apparatus.

2/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

USSR

UDC: 621.396.24

YURLOV F. F., YAMPOL'SKIY, E. M.

"Experimental Determination of the Durations of Interruptions and Gaps in Communications on Short Waves"

Tr. Gor'kov. politekhn. in-ta (Works of Gor'kiy Polytechnical Institute), 1971, 27, No 11, pp 103-105 (from RZh-Radiotekhnika, No 3, Mar 72, Abstract No 3A276)

Translation: A brief report on the results of work in studying the statistical principles which govern fading on short
waves. The measurements were made with a special receiver
and a loop oscilloscope. Statistical processing of the oscillograms gave a law for distribution of the amplitudes of a
gaps in communications. Two illustrations, bibliography of
two titles. N. S.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

USSR

UDC: 621.391.8

YURLOV, F. F. and NURDINOV, S. Kh.

"Noise Immunity System for Transmitting Binary Information With Fading and Power Pulse Noise"

Kiev, <u>Izvestiya VUZ -- Radioelektronika</u>, Vol. 15, No. 9, 1970, pp 1099-1106

Abstract: This article describes a method of group transmission using the principle of time signal separation. The essence of the method of time signal separation is described as transmitting a succession of elemental symbols corresponding to some time interval and making up part of a message, with the elements recorded on the screen of a memory electron-beam tube in which the scanning period is equal to the difference between the duration of an elemental symbol and the duration of the sync pulse. An extensive discussion of the method is given, together with block diagrams showing the makeup of the transmitter and the receiver, and a textual discussion of the operation of both assemblies. The most

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

USSR

YURLOV, F.F., et al, Izvestiya VUZ - Radioelektronika, Vol. 13, No 9, 1970, pp 1099-1106

important advantage of the system is said to be its broad band-width, which guarantees the effective operation of the system under intentional jamming or natural noise conditions. A mathematical discussion of the system's noise immunity with respect to intensive fading is given on a statistical basis. An expression is obtained for the mean signal separation time under the assumption that the duration of the communication break exceeds the transmission time of a section of the message.

5/2

UDC: 621.378.525:532.57

DOMARATSKIY, A. N., KUDRYAVTSEV, M. B., SOBOLEV, V. S., SHMOYLCV, N. F., and YURLOV, Yu. I.

"Investigating the Effect of Scattered Particle Concentration on the Correlation Time of the Laser Doppler Velocity Measurement Signal"

Novosibirsk, Avtometriya, No 5, 1972, pp 122-125

Abstract: The experimental investigation of the effect of scattered particle concentration on the change in the statistical characteristics of a Doppler signal is described. It was conducted for the change in the maximum correlation time of the Doppler signal correlation function. A diagram of the experimental apparatus, involving a single laser type LG-75, operating in the TEMOO mode, is given. The single beam from the laser is split in two by a dividing plate, with the diameters of each beam measuring 0.02 and 0.1 cm, and both are then converged on a bulb of doubledistilled water. The result is the formation of an interference pattern. It is concluded from the experiment that the correlation dent on the change in scattered particle concentration if there

USSR

UDC: 621.378.525:532.57

DOMARATSKIY, A. N., et al, Avtometriya, No 5, 1972, pp 122-125

are fewer than 10 particles in the scattering space and are independent of the change if there are, on the average, 15-70 scattered particles.

USSR

UDC 621.382.2

YURLOVA, G.A., KOLOMIYETS, B.T.

"Glasses In The System Ge-As-Te And The Technology Of Producing Devices On Their Bases"

Elektron.tekhnike. Neuch.-tekhn.sb. Mikroelektronika (Electronics Technology. Scientific-Technical Collection. Microelectronics), 1971, No 3(29), pp 14-17 (from RZh:Elektronike i yeye primeneniye, No 2, Feb 72, Abstract No 2B161)

Translation: The electrical conductivity and the activation energy are determined for glasses of the system Ge-As-Te with gradual isomorphic substitution of part of the germonium for silicon and part of the tellurium for selenium. The electrical parameters are presented of two- and three-electrode S-switches.

1/1

- 97 -

Electrochemistry

USSR

UDC 541.13

YURLOVA, G. A.

"Some Problems of Formation of a Metal to Organic Semiconductor Contact, Part I, Method of Obtaining a Mixed Film"

Moscow, Zhurnal Fizicheskoy Khimii, Vol XLV, No 5, pp 1128-1131

Abstract: The theoretical possibility of obtaining a thin mixed film of organic semiconductor formed as a result of a chemical reaction is demonstrated. The results of element analysis, mass-spectrometric, and polarographic studies of reaction products in extremal compositions demonstrates that mixtures can be obtained by preliminary oxidation of copper plates or by using copper alloys. As a result of oxidation of the copper plates, a mixture of metal-free phthalocyanine and copper phthalocyanine grows on the surfaces of the plates, and when an alloy is used, a layer of copper phthalocyanine and the admixture metal phthalocyanine is formed. Different conditions of oxidizing the copper plates lead to different ratios of the metal-free and copper phthalocyanine in the film.

The yield of copper phthalocyanine as a function of the percentage ratio of cupric and cuprous oxides in the mixture and the volt-ampere characteristics of varistors made of the oxidized copper plates are plotted. The 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

USSR

YURLOVA, G. A., Zhurnal Fizicheskoy Khimii, Vol XLV, No 5, pp 1128-1131

results of mass-spectrometric analysis of the gaseous products of the phthalocyanine reaction are tabulated. The volt-ampere characteristics of the systems studied are symmetric and exhibit a nonlinearity of the varistor type. The varistors manufactured from copper plates with a mixed layer of copper phthalocyanine and nonmetal phthalocyanine had appreciably higher currents than varistors manufactured from copper plates with a layer of only one copper phthalocyanine.

2/2

_ 0 '

VDC 576.858.5.095.383

SELIVANOV, A. A., KOVALEVA, T. P., AKSENOV, O. A., YURLOVA, T. I., LYSOV, V. V., KRYLOV, V. A., and SMORODINTSEV, A. A., All-Union Scientific Research Institute of Influenza, Ministry of Health USSR, Leningrad

"Anti-Interference Effect of Adenoviruses"

Moscow, Voprosy Virusologii, No 5, Sep/Oct 72, pp 574-577

Abstract: Crude adenoviruses, serctype 1, 4, and 7 adenoviruses heated to 56°C for 30 min, and purified pentone antigen of serotype 4 suppress induction of interferon by influenza A2 Hong Kong Virus and inhibit interference between influenza A2 virus and vesicular stomatitis virus in chick embryo fibroblasts. Adenoviruses treated with trypsin, fibrantigen, and hexone-antigen no longer have this capacity. There is a good direct correlation between the cytotoxic anti-interference, and anti-interferon-inducing capacities of the above-tion of vesicular stomatitis virus. It is postulated that anti-interference is due not only to inhibition of interferon production but also to reduction of the activity of previously produced interferon.

1/1

- 29 -

WC 576.858.5.095/.097

KOVALEVA, T. P., YURLOVA, T. I., BOLDASOV, V. K., LYSOV, V. V., RUDENKO, L. G., AKSENOV, O. A., and SELIVANOV, A. A., All Union Scientific Research Institute of Influenca, Finistry of Health USSR, Leningrad

"Biological Properties of Two Strains of Adenovirus Serotype 4"

Moscow, Voprosy Virusologii, No 6, Nov/Dec 71, pp 700-703

Abstract: A comparative study of normal and attenuated strains of adenovirus serotype 4 revealed a number of significant differences. While at the optique culture growth temperature of 37°C, both strains reproduce at the same rate, at 28°C the attenuated strain proliferates much faster and at 40°C such slower than the parent strain. While both strains are almost equally sensitive to human leukocytic interferon, the attenuated strain is significantly more sensitive to nonspecific thermolabile inhibitors, and has a much higher interferon-stimulating and interference activity and a much lower cytotoxic activity. After experimental incompation of human subjects, both strains cause a rapid, fourfold increase in serum antibody considerably less severe and of shorter duration than that induced by the parent strain.

1/1

USSR

UDC 576.858.5.06:576.858.5.097.39].083.1

SELIVANOV, A. A., LYSOV, V. V., YIIII OVA, T. I., and AKSENOV, O. A., All-Union Scientific Research Influenza Institute, Ministry of Health USSR, Leningrad

"A Comparison of Two Methods of Titrating Adenoviruses"

Moscow, Voprosy Virusologii, No 5, 1971, pp 600-603

Abstract: While there is a linear relationship between the titer of adenovirus and incubation time, the ambiguity of the results makes it difficult to compare the strain properties of the agent. Experiments with adenoviruses serotypes 1 and 2 adapted in different degrees to low incubation temperatures in guinea pig kidney tissue culture showed that such comparison can be conveniently made by approximating the titer-incubation time relationship from the sum of the least squares. The accurately reproducible results of the approximation, the regression coefficient of cytopathogenic and cytotoxic activities, correlate with other biological properties and can be used as markers to differentiate adenovirus variants of the same serotype.

1/1

UNCLASSIFIED PROCESSING DATE--11DEC70
TITLE--ALU-INUM CHLURIDE MONDAMICNIATE AS A CATALYST FOR THE
HYDRCCHLCFINATION OF ALUNINUM IN A MELT -UAUTHOR-(C4)-YURLOVA, Z.I., GROSHEV, G.L., DANOV, S.K., SHILUVA, A.V.

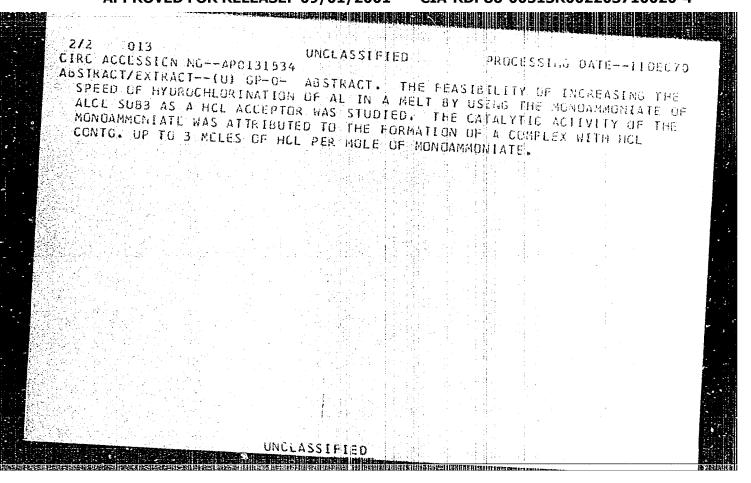
CCUNTRY OF INFO--USSR

SOURCE-- ZH. PRIKE. KHIM. (LENINGRAD) 1970, 43(4), 894-6

DATE PUBLISHED ---- 70

SUBJECT AREAS -- CHEMISTRY

TOPIC TAGS-ALUMINUM CHEORIDE. CATALYST, CHEORINATION, ALUMINUM, CATALYST ACTIVITY


CONTROL MARKING--NO RESTRICTIONS

PROXY REGL/FRAME--3004/0949

STEP NO--UR/0080/70/043/004/0894/0896

CIRC ACCESSION NG--APOIST534

UNGLASSIFIED

UDC: 536.46:533.6

YURMANOV, YU.A., RYZHIK, A.B., LIMONOV, B.S. and MAKHIN, V.S.

"On Ignition of Dispersed Magnesium in Oxigen Behind the Shock Waves"

Odessa, 11-ya Vses. Konf. po Vopr. Ispareniya, Goreniya i Gaz. Dinamiki Dispersn. Sistem, 1972 (11-th All-Union Conference on Problems of Evaporation, Combustion and Gas Dynamics of Dispersion Systems, 1972), 1972, p 58 (from Referativnyy Zhurnal-Mekhanika, 1973, Abstract No

Translation: Tests were conducted with a shock tube of 7.5 m length, 100 mm inside diameter (length of high-pressure chamber 3 m), initial pressure of oxidizing gas (oxigen) 120 mm of mercury. Products of explosion of 2H₂+0₂+4H_e mixture with various initial pressures were used as propelling gas, particle size did not exceed 20 micrometer.

Analysis of experimental data shows that the ignition of magnesium particles occurs in the reflected wave and that the duration of preignition heating depends substantially on the intensity of the impinging shock

USSR

YURMANOV, YU. A., et al., 11-ya Vses. Konf. po Vopr. Ispareniya, Goreniya i

wave. Calculations show that heating of solid particles suspended in the gas results in considerable reduction of reflection zone temperature, therefore it should be considered as temperature of the medium where ignition takes place. The observed exponential relation between ignition lag and temperature the same order as the duration of explosion induction.

2/2

- 26 ...

535.233+629.7.018.1 UDC

KARPUNOV, Ye. G., NEGRUTSAK, L. M., RYZHIK, A. B., FRAYERMAN, S. I.,

"Spectroscopic Investigation of Supersonic Heterogeneous Currents in a Combustible Condensed Phase"

Novosibirsk, Fizika goreniya i vzryva, No 3, 1973, pp 387-391

Abstract: In connection with the problem of the combustion of metallic particles in ultrasonic currents, the authors describe investigations into the relative energy spectrum distribution in the interaction of detonation waves in stoichiometric hydrogen-air mixtures with aluminum and magnesium powder suspensions. They conducted their experiments in accordance with the method of heterochromic photometry, using a formula developed in this article for the radiating surface temperature. A description of the experimental equipment, which includes a shock tube, pressure sensors, and the ISP-51 spectrograph, is given. The tube was 7.5 m long and had an inner diameter of 100 mm, with the suspended material placed in the closed end. Results of the experiments were analyzed by comparing the experimental data with the conclusions of hydrodynamic - 152 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

UDC 629.7.036.54:536.46 YURMANOV, Yu. A., RYZHIK, A. B., LIMONOV, B. S., and MAKHIN, V. S. "The Ignition of Dispersed Magnesium in Oxygen Behind Shock Waves" USSR Odessa, 11-ya Vses. Konf. po Vopr. Ispareniya, Goreniya i Gaz. Dinamiki udessa, LI-ya vses. Noni. po vopr. Isparentya, Gorentya 1 Gaz. Dinamiki of the Dispersn. Sistem, 1972-Sbornik (11th All-Union Conference on Problems of the Evaporation Combustion and Gas Dunamias of Managed Combus Dispersn. Sistem, 19/2-Spornik (lith All-Union Conference on Problems of Life Evaporation, Combustion, and Gas Dynamics of Dispersed Systems, 1972-Collection of Works) 1972 - Spornik (from Defending No. 1972) 1979 - Spornik (lith All-Union Conference on Problems of Life Systems, 1972-Collection of Works) 1979 - Spornik (lith All-Union Conference on Problems of Life Systems) 1972-Collection of Works) 1979 - Spornik (lith All-Union Conference on Problems of Life Systems) 1972-Collection of Works (lith All-Union Conference on Problems of Life Systems) 1972-Collection of Works (lith All-Union Conference on Problems of Life Systems) 1972-Collection of Works (lith All-Union Conference on Problems of Life Systems) 1972-Collection of Works (lith All-Union Conference on Problems of Life Systems) 1972-Collection of Works (lith All-Union Conference on Problems of Life Systems) 1972-Collection of Works (lith All-Union Conference on Problems of Life Systems) 1972-Collection of Works (lith All-Union Conference on Problems of Union Conference on Problem Evaporation, Compustion, and Gas Dynamics of Dispersed Systems, 17/2-00 tion of Works), 1972, p 58 (from Referativnyy Zhurnall-Aviatsionnyye i Raketnyye Dvigateli, No 1, 1973, Abstract No 1.34.151. Resume) Translation: The investigation of the relationship of the ignition lag time of metal particles to temperature involved experiments with a shock tube or metal particles to temperature involved experiments with a snock tube
7.5 m long with an internal diameter of 100 mm (the length of the high-pressure chamber was 3 m) and an initial inflammable—gas pressure of 120 torr. sure champer was 3 m) and an initial inflammable-gas pressure of 120 toll.

The detonation products of a mixture of 2Hz+02+4He at various initial pressure and particle of 2D missing and products of a mixture of 2Hz+02+4He at various initial pressure and particle of 2D missing and products of a mixture of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and particle of 2D missing and an initial pressure and an initial pressur sures and particle size not more than 20 microns were used as the pusher gures and particle size not more than ZU microns were used as the pusher gas. From an analysis of the experimental data, it follows that the ignition of magnetium particles takes place in a reflected ways and the duration of gas. From an analysis of the experimental data, it follows that the ignitive of magnesium particles takes place in a reflected wave and the duration of the decident described and the decident described and the decident decident. or magnesium particles takes prace in a refrected wave and the duration of preflame heating depends substantially upon the intensity of the incident shock wave. Calculations show that the heating of solid particles in a gas suspension leads to a considerable decrease of temperature in the 1/2

CIA-RDP86-00513R002203710020-4" **APPROVED FOR RELEASE: 09/01/2001**

VDC 621.777.07.001.5

GUN, G. Ya., POLUKHIN, P. I., YAKOVLEV, V. I., YUROV, Yu. V., KORITSKIY, G. M., PRUDKOVSKIY, B. A., and KUCHERYAYEV, B. V.

"Experimental Investigation of Speed Distribution During Pressing in Multichannel Matrices"

Plasticheskaya Deformatsiya Metallov i Splavov, Moscow, No 64, "Metallurgiya," 1970, pp 177-184

Translation: Results are given of experimental studies to determine the speeds of metal flow into a matrix with several channels, which form an established profile divided by crosspieces. Six figures and three tables.

1/1

- 28 -

UDC 591.1

ZAL' SMAN, G. L., CHULIMOV, G. A., and YUROVA, K. S., Institute of Evolutionary Physiology and Biochemistry imeni I. M. Sechenov, USSR Academy of Sciences

"Dynamics and Principles of Saturation of the Organism With Inert Gases"

Moscow, Izvestiya Akademii Nauk SSSR, No 2, Mar/Apr 71, pp 192-203

Abstract: Maximum tolerable and minimum injurious (appearance of decompression sickness) oversaturation of the body with nitrogen, helium, and argon were determined and the laws governing the process of saturation of body fluids with these three inert gases were analyzed. Laboratory dogs were placed in a hyperbaric chamber and exposed to the gases at various pressures and for various periods. The results are presented in tables. The parameters determining the shape of the saturation curves and the period of half-saturation were calculated. On the basis of a comparison with analogous data previously obtained on humans, probable saturation curves applicable to the human body were constructed. The concept of a two-phase saturation process determined by different extracellular and intracellular transport mechanisms was established. A tricomponent mathematical model describing the concentration of an 1/2

- 84 -

USSR

ZAL*TSMAN, G. L., et al., Izvestiya Akademii Nauk SSR, No 2, Mar/Apr 71, pp 192-203

indifferent gas in the extracellular and intracellular compartments as a function of time and diffusion characteristics was proposed.

2/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

USSR

UDC 621.039.51

NAUMOV, V. I., and YUROVA, L. N.

"Corrections to the Effective Resonance Integral With Large Steps in a Heterogenous Lattice"

Fiz. Yadern.Reaktorov [Nuclear Reactor Physics -- Collection of works], No 2, Moscow, Atomizdat Press 1970, pp 153-142 (translated from Referativnyy Zhurnal-Yadernyye Reaktory, No 3, 1971, Abstract No 3,50,66)

Translation: In analyzing heterogeneous thermal neutron nuclear reactors it is usually assumed that resonant capture in the block can be described using the effective resonance integral in the Fermi moderation spectrum, this integral being a function only of the composition and size of the block containing the resonent absorber. In setual lattices, due to the heterogeneous placement of blocks which are sources of fission neutrons, the distribution of fast and resonant neutrons may be heterogeneous across each cell, while the spectrum in the block in the high-energy area may differ significantly from the Fermi spectrum. The necessity of special analysis of the area of large lattice steps in the analysis of a resonant capture has been mentioned repeatedly in the literature; however, the approximate estimates of the effect made for heavy water lattices have resulted in relatively slight corrections in the area of actual lattice steps. Later data

1/2

UDC: 536.46:533.6

YURMANOV, YU.A., RYZHIK, A.B., LIMONOV, B.S. and MAKHIN, V.S.

"On Ignition of Dispersed Magnesium in Oxigen Behind the Shock Waves"

Odessa, 11-ya Vses. Konf. po Vopr. Ispareniya, Goreniya i Gaz. Dinamiki Dispersn. Sistem, 1972 (11-th All-Union Conference on Problems of Evaporation, Combustion and Gas Dynamics of Dispersion Systems, 1972), 1972, p 58 (from Referativnyy Zhurnal-Mekhanika, 1973, Abstract No 2B1005)

Translation: Tests were conducted with a shock tube of 7.5 m length, 100 mm inside diameter (length of high-pressure chamber 3 m), initial pressure of oxidizing gas (oxigen) 120 mm of mercury. Products of explosion of $2H_2+02+4H_e$ mixture with various initial pressures were used as propelling gas, particle size did not exceed 20 micrometer.

Analysis of experimental data shows that the ignition of magnesium particles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the ignition of preparticles occurs in the reflected wave and that the ignition of magnesium particles occurs in the reflected wave and that the ignition of magnesium particles occurs in the reflected wave and that the ignition of magnesium particles occurs in the reflected wave and that the ignition of magnesium particles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and that the duration of preparticles occurs in the reflected wave and the reflec

HENDELDE EN NEWERLE EN BEGER EN EN EKKEREN EN HENDE EN EN EN EN EN EKKEREN EK HER EN EKKEREN EKKEREN EKKEREN E Fran Ekkeren en ekkeren en beger en en ekkeren en en ekkeren en en ekkeren en ekkeren en ekkeren en ekkeren ek

USSR

YURMANOV, YU. A., et al., 11-ya Vses. Konf. po Vopr. Ispareniya, Goreniya i Gaz. Dinamiki Dispersn. Sistem, 1972

wave. Calculations show that heating of solid particles suspended in the gas results in considerable reduction of reflection zone temperature, therefore it should be considered as temperature of the medium where ignition takes place. The observed exponential relation between ignition lag and temperature indicates that increase of the latter may result in ignition lag becoming of the same order as the duration of explosion induction.

2/2

-36--

USSR

UDC 535.233+629.7.018.1

KARPUHOV, Ye. G., NEGRUTSAK, L. M., RYZHIK, A. B., FRAYERMAN, S. I., and YURMANOV, Yu. A.

"Spectroscopic Investigation of Supersonic Heterogeneous Currents in a Combustible Condensed Phase"

Novosibirsk, Fizika goreniya i vzryva, No 3, 1973, pp 387-391

Abstract: In connection with the problem of the combustion of metallic particles in ultrasonic currents, the authors describe investigations into the relative energy spectrum distribution in the interaction of detonation waves in stoichiometric hydrogen-air mixtures with aluminum and magnesium powder suspensions. They conducted their experiments in accordance with the method of heterochromic photometry, using a formula developed in this article for the radiating surface temperature. A description of the experimental equipment, which includes a shock tube, pressure sensors, and the ISP-51 spectrograph, is given. The tube was 7.5 m long and had an inner diameter of 100 mm, with the suspended material placed in the closed end. Results of the experiments were analyzed by comparing the experimental data with the conclusions of hydrodynamic theory.

USSR

VDC 629.7.036.54:536.46

YURMANOV, Yu. A., RYZHIK, A. B., LIMONOV, B. S., and MAKHIN, V. S.

"The Ignition of Dispersed Magnesium in Oxygen Behind Shock Waves"

Odessa, 11-ya Vses. Konf. po Vopr. Ispareniya, Goreniya i Gaz. Dinamiki Dispersn. Sistem, 1972—Sbornik (11th All-Union Conference on Problems of the Evaporation, Combustion, and Gas Dynamics of Dispersed Systems, 1972—Collection of Works), 1972, p 58 (from Referativnyy Zhurnall—Aviatsionnyye i Raketnyye Dvigateli, No 1, 1973, Abstract No 1.34.151. Resume)

Translation: The investigation of the relationship of the ignition lag time of metal particles to temperature involved experiments with a shock tube 7.5 m long with an internal diameter of 100 mm (the length of the high-pressure chamber was 3 m) and an initial inflammable-gas pressure of 120 torr. The detonation products of a mixture of $2H_2+0_2+4He$ at various initial pressures and particle size not more than 20 microns were used as the pusher gas. From an analysis of the experimental data, it follows that the ignition of magnesium particles takes place in a reflected wave and the duration of preflame heating depends substantially upon the intensity of the incident shock wave. Calculations show that the heating of solid particles in a gas suspension leads to a considerable decrease of temperature in the 1/2

USSR

YURMANOV, Yu. A., et al., 11-ya Vses. Konf. po Vopr. Ispareniya, Goreniya i Gaz. Dinamiki Dispersn. Sistem, 1972--Sbornik, 1972, p 58

reflection zone, and in connection therewith this temperature should be regarded as the temperature of the medium, at which the ignition process develops. Within the temperature range of $T=2160-3490\,^\circ\text{K}$ the ignition lag time turned out to equal 1.6-0.5 milliseconds. The disclosed exponential relationship of the ignition lag time to the temperature signifies that with a temperature increase, the lag value can become of the same order of magnitude as the induction period during detonation.

2/2

- 22 -

UDC 621.777.07.001.5

GUN, G. Ya., POLUKHIN, P. I., YAKOVLEV, V. I., YUROV, Yu. V., KORITSKIY, G. M., PRUDKOVSKIY, B. A., and KUCHERYAYEV, B. V.

"Experimental Investigation of Speed Distribution During Pressing in Multichannel Matrices"

Plasticheskaya Deformatsiya Metallov i Splavov, Moscow, No 64, "Metallurgiya," 1970, pp 177-184

Translation: Results are given of experimental studies to determine the speeds of metal flow into a matrix with several channels, which form an established profile divided by crosspieces. Six figures and three tables.

1/1

- 28 -

UDC 591.1

USSR

ZAL' SMAN, G. L., CHULIMOV, G. A., and YUROVA, K. S., Institute of Evolutionary Physiology and Biochemistry imeni I. M. Sechenov, USSR Academy of Sciences

"Dynamics and Principles of Saturation of the Organism With Inert Gases"

Moscow, Izvestiya Akademii Nauk SSSR, No 2, Mar/Apr 71, pp 192-203

Abstract: Maximum tolerable and minimum injurious (appearance of decompression sickness) oversaturation of the body with nitrogen, helium, and argon were determined and the laws governing the process of saturation of body fluids with these three inert gases were analyzed. Laboratory dogs were placed in with these three inert gases were analyzed. Laboratory dogs were placed in a hyperbaric chamber and exposed to the gases at various pressures and for various periods. The results are presented in tables. The parameters determining the shape of the saturation curves and the period of half-saturation were calculated. On the basis of a comparison with analogous data previously obtained on humans, probable saturation curves applicable to the human body were constructed. The concept of a two-phase saturation process determined by different extracellular and intracellular transport mechanisms was established. A tricomponent mathematical model describing the concentration of an 1/2

- 84 -

USSR

ZALTSMAN, G. L., et al., Izvestiya Akademii Nauk SSR, No 2, Mar/Apr 71, pp 192-203

indifferent gas in the extracellular and intracellular compartments as a function of time and diffusion characteristics was proposed.

2/2

USSR

UDC 621.039.51

NAUMOV, V. I., and YUROVA, L. N.

"Corrections to the Effective Resonance Integral With Large Steps in a Heterogenous Lattice"

Fiz. Yadern Reaktorov [Nuclear Reactor Physics -- Collection of works], No 2, Moscow, Atomizdat Press 1970, pp 153-142 (translated from Referativnyy Zhurnal-Yadernyye Reaktory, No 5, 1971, Abstract No 5.50,66)

Translation: In analyzing heterogeneous thermal neutron nuclear reactors it is usually assumed that resonant capture in the block can be described using the effective resonance integral in the Fermi moderation spectrum, this integral being a function only of the composition and size of the block containing the resonent absorber. In actual lattices, due to the heterogeneous placement of blocks which are sources of fission neutrons, the distribution of fast and resonant neutrons may be heterogeneous across each cell, while the spectrum in the block in the high-energy area may differ significantly from the Fermi spectrum. The necessity of special analysis of the area of large lattice steps in the analysis of a resonant capture has been mentioned repeatedly in the literature; however, the approximate estimates of the effect made for heavy water lattices have resulted in relatively slight corrections in the area of actual lattice steps. Later data

1/2

USSR

NAUMOV, V. I., and YUROVA, L. N., Fiz. Yadern Reaktorov, No. 2, Moscow, Atomizdat Press, 1970, pp 133-142

for uranium-graphite lattices have indicated that there is a considerable effect related to the difference between the neutron spectra and the Fermi spectra for this class of nuclear reactors. In connection with modern trends toward increasing lattice step in uranium-graphite nuclear reactors and the nectessity of correct consideration of the number of captures in the uranium, this effect is quite important and requires serious the uranium, this effect is quite important and requires serious study. Results of calculations on the influence of the spectrum of fast neutrons on the reasonance approximation are presented in this article. 3 figures; 2 tables, 4 biblio refs.

9./7

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

WDC 621.039.5/6

LETUNSKIY, A. I., YUROVA, LANG, BOBROV, S. B., MUROGOV, V. M., TOCHENYY, L. V., TROYANOV, M. F., and SHIELEV, A. N.

*Improving the Physical Characteristics of Fast Plutonium Reactors by Using U233 and Thorium"

Moscow, Atomnaya Energiya, Vol 30, No 6, Jun 71, pp 491-498

Abstract: Investigations carried out on the physics of fast reactors, both in the USSR and abroad, have shown the requirements for a high breeding time and safety guarantee may be contradictory. This article seeks to find ways for resolving these contradictions.

The authors first discuss the basic physical characteristics of fast reactors using a mixed fuel by equalizing the field of heat release. Computations showed that in a fast reactor using a mixed fuel composed of 1233 and plutonium the radial coefficient of imbalance can be reduced, the breeding ratio increases significantly, and the doubling time is improved. Table 1 compares the characteristic of different types of high-power fast The authors then discuss changing the profile of the heat release reactors.

1/2

- 114 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203710020-4"

USSR

LEYPUNSKIY, A. I., et al., Atomnaya Energiya, Vol 30, No 6, Jun 71, pp 491-498

field during the operating period of a high-power fast reactor using a mixed fuel and give Figure 1 as illustration. They then discuss change in the reactance during the same period for such a reactor, using Figures 2, 3, and 4 for graphic visualization. Finally, they discuss the Doppler and sodium coefficients of reactance in such a reactor and use Figure 5 and sodium coefficients of reactance in such a reactor and use Figure 5 and sodium to claim that the possibility does exist for increasing the power strength and breeding time of the fuel with the simultaneous assurance of safety for a fast reactor using a sodium heat carrier; this is possible by using 1233 and thorium in conjunction with U238 and plutonium in high-power fast reactors.

The article contains 5 figures, 2 tables, and a bibliography of 15 titles.

2/2

UDC 621.039.51

USSR

YUROVA. L. N., ROMODANOV, V. L., SMIRNOV, V. YE., PANKRATENKO, D. A., and SHISHKOV, L. K.

"Application of the Method of the Pulsed Neutron Source to Systems With Heterogeneities"

Fiz. Yadern. Reaktorov (Nuclear Reactor Physics -- Collection of works), No 2, Moscow, Atomizdat Press 1970, pp 3-10 (from Referativnyy Zhurnal-Yadernyye Reaktory, No 3, 1971, Abstract No 3.50.76)

Translation: Neutron physics problems are frequenty solved by applying the theory of perturbations -- to calculate the change in criticality of nuclear reactors or various neutron flux functionals. The possibility is studied of using the theory of perturbations for calculation of reactor shielding. The theory of perturbations (generally speaking of high orders) can also be applied to the unstable equation of neutron transfer. In the experiments described with pulsed neutron source, a change in decay constants was achieved by two means: by changing the geometric size of the specimen or by changing its diffusion characters.